Skip to main content
Version: 1.0.7

Regression - Flight Delays with DataCleaning

This example notebook is similar to Regression - Flight Delays. In this example, we will demonstrate the use of DataConversion() in two ways. First, to convert the data type of several columns after the dataset has been read in to the Spark DataFrame instead of specifying the data types as the file is read in. Second, to convert columns to categorical columns instead of iterating over the columns and applying the StringIndexer.

This sample demonstrates how to use the following APIs:

Next, import the CSV dataset: retrieve the file if needed, save it locally, read the data into a pandas dataframe via read_csv(), then convert it to a Spark dataframe.

Print the schema of the dataframe, and note the columns that are long.

flightDelay = spark.read.parquet(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/On_Time_Performance_2012_9.parquet"
)
# print some basic info
print("records read: " + str(flightDelay.count()))
print("Schema: ")
flightDelay.printSchema()
flightDelay.limit(10).toPandas()

Use the DataConversion transform API to convert the columns listed to double.

The DataConversion API accepts the following types for the convertTo parameter:

  • boolean
  • byte
  • short
  • integer
  • long
  • float
  • double
  • string
  • toCategorical
  • clearCategorical
  • date -- converts a string or long to a date of the format "yyyy-MM-dd HH:mm:ss" unless another format is specified by the dateTimeFormat parameter.

Again, print the schema and note that the columns are now double instead of long.

from synapse.ml.featurize import DataConversion

flightDelay = DataConversion(
cols=[
"Quarter",
"Month",
"DayofMonth",
"DayOfWeek",
"OriginAirportID",
"DestAirportID",
"CRSDepTime",
"CRSArrTime",
],
convertTo="double",
).transform(flightDelay)
flightDelay.printSchema()
flightDelay.limit(10).toPandas()

Split the dataset into train and test sets.

train, test = flightDelay.randomSplit([0.75, 0.25])

Create a regressor model and train it on the dataset.

First, use DataConversion to convert the columns Carrier, DepTimeBlk, and ArrTimeBlk to categorical data. Recall that in Notebook 102, this was accomplished by iterating over the columns and converting the strings to index values using the StringIndexer API. The DataConversion API simplifies the task by allowing you to specify all columns that will have the same end type in a single command.

Create a LinearRegression model using the Limited-memory BFGS solver (l-bfgs), an ElasticNet mixing parameter of 0.3, and a Regularization of 0.1.

Train the model with the TrainRegressor API fit on the training dataset.

from synapse.ml.train import TrainRegressor, TrainedRegressorModel
from pyspark.ml.regression import LinearRegression

trainCat = DataConversion(
cols=["Carrier", "DepTimeBlk", "ArrTimeBlk"], convertTo="toCategorical"
).transform(train)
testCat = DataConversion(
cols=["Carrier", "DepTimeBlk", "ArrTimeBlk"], convertTo="toCategorical"
).transform(test)
lr = LinearRegression().setRegParam(0.1).setElasticNetParam(0.3)
model = TrainRegressor(model=lr, labelCol="ArrDelay").fit(trainCat)

Score the regressor on the test data.

scoredData = model.transform(testCat)
scoredData.limit(10).toPandas()

Compute model metrics against the entire scored dataset

from synapse.ml.train import ComputeModelStatistics

metrics = ComputeModelStatistics().transform(scoredData)
metrics.toPandas()

Finally, compute and show statistics on individual predictions in the test dataset, demonstrating the usage of ComputePerInstanceStatistics

from synapse.ml.train import ComputePerInstanceStatistics

evalPerInstance = ComputePerInstanceStatistics().transform(scoredData)
evalPerInstance.select("ArrDelay", "prediction", "L1_loss", "L2_loss").limit(
10
).toPandas()